IMPS Process Data Workshop: Session 4 (Applications) Handout

Susu Zhang

7/19/2021

Application 1: Predictions

In this section, we use the MDS features extracted from process data to make predictions about dichotomous
or continuous variables. Examples of variables that can be predicted include:

« Final response: correct/incorrect, polytomous score
e Opverall proficiency: uni- or multidimensional € for response accuracy
o External covariates: demographics, other cognitive/noncognitive traits

We denote a (1-dimensional) predicted variable by Y. Y can be continuous or categorical.

The MDS process features (denoted X) are the K—dimensional numerical features, which are returned
by running seq2feature_mds on the problem solving processes. The illustrations are based on MDS
features, but the methods are equally applicable to other types of features, such as those returned from
seq2feature_seqg2seq.

Method: Ridge Regression

The method we use for these predictions is ridge regression. The dimension of the process features (K) can
be high, and it is possible that only a small number of dimensions are related to the predicted variable.
Unlike Ordinary Least Squares (OLS) regression, which minimizes the residual sum of squares (RSS), ridge
regression adds an additional Lo penalty to the regression coefficients, which helps prevent overfitting.

For the prediction of a continuous variable, the regression coeflicients (fs) minimize

N K 2 K K
> (n—&—}jmm) +A) Bi=RSS+AY B

i=1 k=1 k=1 k=1
For the prediction of a dichotomous variable, the coefficients (8s) minimize

K
1
— g L(Y; X, B) + A B

k=1
Here, X is the penalty term. Larger As give more penalty to the regression coefficients, which will lead to
smaller coefficients. In practice, A can be selected using cross validation (CV).

Ridge regression (and the selection of A using CV) can be implemented using the glmnet R package. The
package can be installed by running install.packages('glmnet'). Below, we illustrate this with two
examples based on the PISA 2012 data.

Example: Predictions with Climate Control Processes

Here, we present 2 examples using MDS process features for predictions, one with a continuous variable, and
the other with a dichotomous variable.

The two predicted variables (Y's) are as follows:

o Overall CPS proficiency (mean plausible value): Continuous.
o Score (0/1) on climate control item: Dichotomous.

For both examples, our predictor variables (X) are the K = 50—dimensional MDS features extracted from
the climate control processes. The MDS features have been pre-trained using the seq2feature_mds function.
For the first prediction (overall CPS proficiency), we additionally include a 515 dimension, which is the final
response accuracy (cc_data$responses).

The PISA CPS proficiency variable can be found from the public PISA 2012 data (http://www.oecd.org/pis
a/pisaproducts/database-cbapisa2012.htm).

The MDS features (mds_fts), binary final responses (resp_cc), and the overall CPS proficiency (PVCPRO)
are available in the pred_example.RData file.

To load the PISA example data to your R environment, run load('pred_example.RData'). We can first
look at some basic information and descriptive statistics of the features and the Ys.

MDS feature
cat('0Object class of mds_fts: \n')

Object class of mds_fts:
class(mds_fts)

[1] "matrix" "array"

cat('Dimensions of mds_fts: \n')

Dimensions of mds_fts:

dim(mds_fts)

[1] 16763 50

Responses
cat('Object class of resp_cc: \n')

Object class of resp_cc:

class(resp_cc)

[1] "integer"
cat('Length of resp_cc: \n')

Length of resp_cc:
length(resp_cc)

[1] 16763

CPS Proficiency
cat('Object class of PVCPRO: \n')

Object class of PVCPRO:
class (PVCPRO)

[1] "numeric"

cat('Length of PVCPRO: \n')

Length of PVCPRO:

http://www.oecd.org/pisa/pisaproducts/database-cbapisa2012.htm
http://www.oecd.org/pisa/pisaproducts/database-cbapisa2012.htm

length (PVCPRO)

[1] 16763

cat ('Summary statistics: \n')

Summary statistics:

summary (PVCPRO)

Min. 1st Qu. Median Mean 3rd Qu. Max.
76.08 433.03 504.13 499.22 569.55 828.46

We randomly select 80% of individuals for training the model (including cross-validation). The remaining
20% of individuals, i.e. the test set, is used for evaluating the prediction accuracy.

Predicting Overall Proficiency: The following code implements the prediction of overall CPS proficiency
using ridge regression. Specifically, it performs of following steps:

o Randomly split the data into training (index_train) and testing (index_test) sets; Only the individ-
uals in index_train are included for training the model.

o Getting the predictor features (X, 50 MDS features + one response accuracy feature)
o Ridge regression: The cv.glmnet function performs (by default, 10-fold) cross-validation. Arguments:

— x: Matrix of predictors. Here, we use the mds features plus the final score

— y: Predicted variable. Here, it is the overall CPS proficiency.

— family: The model. Here, gaussian indicates linear model with continuous outcome.

— alpha: Elastic net mixing parameter. Setting alpha = 0 performs ridge regression with Lo
penalty.

e Predict individual PVCPRO using using the model returned above.

e Evaluate the out-of-sample correlation between the predictions and the observed values of Y on
index_test individuals.

library(glmnet)
set.seed(0000)

splitting the data

samples <- which(!is.na(PVCPRO))

index_train <- sample(samples, .8*length(samples))
index_test <- setdiff (samples, index_train)

getting the predictors
X <- cbind(mds_fts, resp_cc)

MDS + response

out_mds <- cv.glmnet(x = X[index_train,], y = PVCPRO[index_train], family = "gaussian", alpha = 0)
PVCPRO_pred_mds <- predict(out_mds, newx = X, s = "lambda.min")

Evaluate on test set
cat ('Out-of-sample correlation w/ observed Ys: \n')

Out-of-sample correlation w/ observed Ys:

cor (PVCPRO_pred_mds[index_test,], PVCPRO[index_test])

[1] 0.6638176

Let us compare the prediction accuracy with using responses alone.

set.seed(0000)

splitting the data

samples <- which(!is.na(PVCPRO))

index_train <- sample(samples, .8*length(samples))
index_test <- setdiff(samples, index_train)

Response
out_resp <- 1m(PVCPRO ~ resp_cc, subset = index_train)
PVCPRO_pred_resp <- predict(out_resp, newdata = as.data.frame(resp_cc))

Evaluate on test set

cat ('Out-of-sample correlation w/ observed Ys: \n')

Out-of-sample correlation w/ observed Ys:

cor (PVCPRO_pred_resp[index_test], PVCPRO[index_test])

[1] 0.5788362

It can be observed that, the prediction of proficiency using the additional information from the processes (w/
OSR of .64) is more accurate than that using responses alone (OSR of .56). In other words, the processes can
provide additional information on CPS proficiency.

Predicting Final Response: Prediction of final score on the climate control item (dichotomous) is similar,
with just a few modifications. The code below implements score prediction using logistic regression with Lo
regularization. It performs of following steps (differences w/ continuous case are bolded):

Randomly split the data into training (index_train) and testing (index_test) sets; Only the individ-
uals in index_train are included for training the model.

Getting the predictor features (X, 50 MDS features)
Ridge regression: The cv.glmnet function performs (by default, 10-fold) cross-validation. Arguments:

— x: Matrix of predictors. Here, we use the mds features

— y: Predicted variable. Here, it is the participant score on the climate control item (0/1).

— family: The model. Here, binomial indicates logistic model with binary outcome.

— alpha: Elastic net mixing parameter. Setting alpha = 0 performs ridge regression with Lo
penalty.

Predict individual score using using the model returned above.

Evaluate the agreement rate between the predictions and the observed values of Y on index_test
individuals. Note that the predictions (score_pred_mds) is the prediction on the linear component of
the logistic regression. To get dichotomous predictions, we can cut it at 0.

library(glmnet)

set.seed(0000)

splitting the data
samples <- which(!is.na(resp_cc))

index_train <- sample(samples, .8*length(samples))
index_test <- setdiff (samples, index_train)

getting the predictors
X <- mds_fts

MDS
out_mds <- cv.glmnet(x = X[index_train,], y = resp_cclindex_train], family = "binomial", alpha = 0)
score_pred_mds <- predict(out_mds, newx = X, s = "lambda.min")

dichotomize predictions
score_pred_mds <- 1x(score_pred_mds >= 0)

Evaluate on test set
cat('Out-of-sample agreement w/ observed Ys: \n')

Out-of-sample agreement w/ observed Ys:

mean(score_pred_mds[index_test,] == resp_cc[index_test])

[1] 0.7971965

Note that the baseline of prediction accuracy of is approximately .53 (53% of individuals in the test set
responded correctly).

Application 2: Scoring
Our second application concerns the use of process features to increase measurement precision.

Accurate assessment of latent constructs in the key goal of a test. Suppose a test is designed to measure a
unidimensional latent construct, #. There are J items in the test. And for each item, both the problem-solving
processes and the final response are available. There are many occasions in which the problem-solving
processes can contain additional information on . For example:

« Partial completion: Some correct steps, but incorrect final response
e Strategy: Some strategies may suggest higher proficiency than others

For each item, the additional information from the processes about 6, when wisely used, increases amount of
information an item can provide. This can potentially help us achieve two purposes:

e Increase measurement precision: With same number of items, additional information from the processes
can increase measurement reliability.

e Reduce test length: At a preset level of reliability, additional information from processes can reduce the
number of items required.

Method: Rao-Blackwellization Scheme

We introduce an approach to increase measurement accuracy using the process features. Consider a setting
as follows:

e A test of J items is administered to a pretest sample of N individuals.

e For each individual ¢ and each item j, the problem-solving processes and the final responses are both
available.

o For each item, we extract process features using some feature extraction method (e.g., MDS). The
extracted features (X;) contain full information about the final response (Y;). In other words, the X;
can perfectly predict Y.

o The test is originally scored based on final responses (Y;s) using an IRT model (e.g., the 2PL model or
the graded response model).

— Denote the IRT response-based ability estimate by 6;

— Suppose the item parameters (¢;s) have been pre-calibrated on the pre-test sample.

Under this setting, the following procedures refine the latent trait estimate based on final responses, using
the additional information on the problem-solving processes leaving out item j:

o Step 1: Extracting a leave-one-out (LOO) sufficient statistic of §: This can be done by
estimating the latent trait based on the final response to item j only, denoted éyj , and regressing it
against all process features except on item j, denoted X_;. Call this regression outcome (LOO
sufficient statistic) T'x_.

¢ Step 2: Rao-Blackwellization: With the output from the last step, T'x_,, regress the response-based

6 on all items against Tx_, and Yj. Call the regression output 6_;.
Intuitively, the two steps performs two separate regressions:

o The first step estimates Tx_, = E(éyj | X_;).
o The second step estimates é_j =E@| Tx_;,Y;).

Under some regularity assumptions, it can be shown theoretically that:

e Tx_,, the output from Step 1, combined with Y}, are sufficient statistics about 6.

e Based on the Rao-Blackwell theorem, regressing the original ability estimator (é) on the sufficient
statistic will result in a “better” ability estimator - one with lower mean-squared-error (MSE).

In other words, the LOO process-based latent trait estimate, 0 x_,;, will result in lower expected deviation

from the true 6 compared to the response-based latent trait estimate, 6. This holds for all 7 and all possible
Os.

We can repeat this procedure and obtain the process-based OAXﬂ, for each j. To combine all J estimators, we
can take the arithmetic average:

1 J
Ox = 7;9)“”

Illustration: Simulated data set

We illustrate the procedures of the above approach on a simulated data set. The full data set, available in
partial_example.RData, consists of J = 14 items and N = 2000 examinees. It contains several objects:

o Problem-solving processes (seqs_byitem): A list (length-J), which contains the sequence of actions of
each individual on each item. The sequences were simulated to be correlated with an underlying latent
trait, true 6 (object theta). Here’s a preview for item 1, examinees 1 and 2:

seqs_byitem[[1]]$action_seqs[1:2]

[[1]1]

[1] "a" "f" ME" ngt te" e "g"
#i#t

[[2]]

[1] llall llfll llgll

o Final responses (resp): A matrix (N x J), which contains the dichotomous responses of individuals on
the J items. These responses were generated based on the presence/absence of the most correlated
subsequence with 6.

head (resp)

iteml item2 item3 item4 item5 item6 item7 item8 item9 iteml0 itemll iteml2
[1,] 1 0 1 1 0 0 0 1 1 1 0 0
[2,] 0 0 0 0 0 0 0 0 0 0 0 0

[3,] 1 0 0 1 0 1 1 1 0 1 1 1
[4,] 0 1 0 0 1 0 1 1 0 1 1 1
[5,] 0 0 0 0 1 1 0 1 1 0 0 0
[6,] 0 0 0 0 0 0 0 0 0 0 0 0
#it item13 iteml4
[1,] 1 1
[2,] 0 0
[3,] 1 1
[4,] 1 1
[5,] 1 0
[6,] 0 0

In practice, the first step would be extracting features from the action sequences on each item. This can be
done with the code below:

mds_fts_byitem <- lapply(seqs_byitem, seq2feature_mds, K = 10)
mds_fts_byitem <- lapply(mds_fts_byitem, function(x) x$theta)

include resp as last dimension to ensure predictability
mds_fts_byitem <- Map(cbind, mds_fts_byitem, as.data.frame(resp))

This is going to take a while, so here, the pre-trained 10—dimensional MDS features for each item is stored
as mds_fts_byitem. This is a length-J list, where each element is a 2000 x 11 matrix, the last dimension
being the final response to item j.

For the sake of illustration, let’s only use the first 5 items out of all 14. In this case, the ability estimate
based on traditional IRT models, 8, will depend only on the dichotomous responses to 5 questions.

resp_ps <- respl[,1:5]
mds_fts_ps <- mds_fts_byitem[1:5]

Using the process information, we will produce a process-based latent trait estimate (é x). Let’s try to answer
the following questions:

e How do the response-based and process-based ability estimators perform, when the test consists of only
5 questions?
e Comparing the two estimators - what does the process-based ability estimator do differently?

Obtaining both estimators require the installation of the mirt package (install.packages("mirt")). Let’s
define two simple functions for IRT-based item calibration and ability estimation:

e get_model_mirt: This fits the IRT model and calibrates the item parameters based on final responses.
e get_traits_mirt: This obtains the latent trait estimate based on the responses to a subset of items.
We use EAP estimation in the illustrations, but this can be changed to other methods.

get_model_mirt <- function(scores, types, itemset){
model <- mirt(data = scores[,itemset], model = 1, itemtype = types[itemset],verbose = F)
return(model)

}

get theta based on subset of item responses with known irt pars

get_traits_mirt<-function(scores, model, itemset, method = 'EAP'){
scores[,which(! colnames(scores) %in% itemset)] <- NA
res <- fscores(model, response.pattern = as.matrix(scores), method = method, full.scores.SE = TRUE)
theta <- res[,'F1']

if (method == 'ML'){
theta[which(theta == Inf)] <- max(thetal[which(theta<Inf)])+.5
theta[which(theta == -Inf)] <- min(theta[which(theta>-Inf)])-.5
}

return(theta)
}

The following code implements the partial scoring procedures. Again, we train the partial scoring model on a
training set (index_train) and set aside a test set (index_test) for evaluations.

library(glmnet)
library (mirt)

item_code <- colnames(resp_ps)
item_type <- ifelse(apply(resp_ps, 2, function(x)
length(unique(x)))==2, '2PL','graded')

set.seed(0000)

samples <- 1l:nrow(resp_ps)

index_train <- sample(samples, .8*length(samples))
index_test <- setdiff (samples, index_train)

Calibrate IRT model parameters

mirt_model <- get_model_mirt(resp_ps[index_train,],item_type, itemset = item_code)
response-based trait estimate

theta_yhat <- get_traits_mirt(resp_ps, mirt_model, item_code)

obtain LOO process-based score for each j

thetahats_loo <- matrix(NA, nrow(resp_ps), ncol(resp_ps))

for(j in 1:ncol(resp_ps)){
get theta_yj based on Yj
theta_yj <- get_traits_mirt(resp_ps, mirt_model, item_code[j])
get T_-j: Regress theta_yj on X[-j]

features <- Reduce(cbind, mds_fts_ps[-j]) # all process fts exzcept item j
reg X <- cv.glmnet(x = features[index_train,], y = theta_yjl[index_train], family = "gaussian", alpha :
Tx <- predict(reg_X, newx = features, s = "lambda.min") #T -5

get thetahat_X,-j: Regress theta_yhat on Yj, T _-j
df <- data.frame(theta_yhat, Yj = resp_ps[,jl, Tx = Tx)
reg_T <- 1lm(theta_yhat ~ Yj+Tx+Yj*Tx,data = df, subset = index_train)
thetahats_loo[,j] <- predict(reg_T, newdata = df)
}

theta_x <- rowMeans(thetahats_loo)

The true 6 used for generating the sequences and responses is stored as theta_ps. On the test set, we can
evaluate the response- and process-based latent trait estimates in terms of two aspects:

e MSE with respect to true 6
o Kendall’s 7 correlation with true 6

Evaluation:

MSE
cat('MSE of process-based theta estimate: \n')

MSE of process-based theta estimate:
mean((theta_x[index_test] - theta_ps[index_test])~2)

[1] 0.3314686

cat ('MSE of response-based theta estimate: \n')

MSE of response-based theta estimate:
mean((theta_yhat [index_test] - theta_ps[index_test]) ~2)

[1] 0.3907637
Correlation (Kendall's tau)

cat('Correlation using process-based theta estimate: \n')

Correlation using process-based theta estimate:

cor(theta_x[index_test], theta_ps[index_test], method = 'kendall')

[1] 0.644411

cat('Correlation using response-based theta estimate: \n')

Correlation using response-based theta estimate:

cor (theta_yhat[index_test], theta_ps[index_test], method = 'kendall')

[1] 0.6153846

Why does the process-based estimator agree better with the true 67 Let’s take a look at the scatterplots of
the two estimators against true 6.

Plots:

plot(theta_ps, theta_yhat, xlab = 'true ability', ylab = 'response-based estimate')

o
N O O 00O O OO
g v
i
£ .
e
3 o |
i
k5 O oy
A LR
3
[o]
T o o
q) O} 0
2 DO ORI
S o Q) (TR
o S
% H()NT@ @Y v (1
(O] (OO0 Q0)i) (T 0)
= o
o -
|
-3 -2 -1 0 1 2 3

true ability

plot(theta_ps, theta_x, xlab = 'true ability', ylab = 'process-based estimate')

0
i
Q
o
g o _
—
)
o
- 0]
o O
2]
o
e 2 _
N)
(%]
4]
Q |
o
S
o
o
<

true ability

Application 3: DIF Correction
Dimensional Account of DIF

Differential item functioning (DIF) occurs when an item functions differently for separate groups of test-takers.
Under a dimensional account, DIF can be explained by the presence of construct-irrelevant, or “nuisance”
traits, that affect response accuracy. When the distribution of the nuisance trait differs across two groups (i.e.,
the focal (f) and the reference (r) groups), one group of individuals will have a lower chance of responding
correctly. For example:

o For a statistics assessment: A question involving baseball rules may be harder for test-takers from
cultures with little baseball exposure. Here, the nuisance trait is baseball knowledge.

o For a computer-based assessment: A question presented with non-adjustable small font size may be
harder for test-takers with low-vision. Here, the nuisance trait is the ability to read and work with
small characters.

When these nuisance traits are not taken into account in item response modeling, the item parameters will
differ for individuals from the two groups. Consequently, the item will be biased against some of individuals,
threatening test validity.

DIF Removal with Process Features

For a traditional assessment with response information only, most of the time, the best one can do is to identify
items with DIF and remove them from the test. However, additional problem-solving process information
may allow us to reconstruct the nuisance variable leading to DIF. By finding the nuisance variable, we

10

may reconstruct the “true” item response function that depends on both measured and nuisance
constructs, thus correcting for DIF in the measurement model.

Essentially, we want to find the nuisance trait (r;) from the process features, so that group membership no
longer affects the item response given (6,7). Taking the 2PL model as an example. For an item (j) with
detected DIF (for example, using a likelihood ratio test), we want to find a linear combination of the process
features,

K
nj = § Wik Xk,
k=1

so that the probability of correct response in the focal group, P(Y; = 1| n;,0), and the correct response
probability in the reference group, P,(Y; =1 | n;,6), are as close as possible. Here, the probability of correct
response (IRF) given group membership g is

1
Py(Y; =116,m;) = '
g(j | 777J) 1+exp[_(agj(0+77j)+dgj)]

Note that there is not an unique 7 that achieves this. For example, if all K process features are used, the
final response is perfectly predictable. This (perfect) response function will be group invariant, but, at the
same time, §—invariant, meaning that the response to this question will no longer provide information for
estimating 6. Thus we want to perform variable selection and select a subset of process features to
reconstruct the nuisance trait 7.

Here we introduce a method to correct for DIF by

(1) Identifying items with DIF using likelihood ratio test

(2) For items with DIF, reconstruct nuisance trait 7 with a subset of process features. This is done so by
estimating ws to minimize the Lo distance between focal and reference group item response functions
given 6 = 0 + n;, i.e.,

b= 17 =110 s =1 s

(3) Using the reconstructed nuisance traits of DIF items, n;s, and the updated estimates of a; and d;s,
update the IRF for items with DIF to incorporate 7;, and re-estimate 6.

The test statistic d;, which is empirically estimated by cij = \/% ZZNZI[Pf(Yj =110)—P.(Y; =1]0)2),
also allows us to perform hypothesis testing to see whether the two IRFs for focal and reference groups
significantly differ. Under the Null hypothesis that two IRFs given € and 7 are identical, i.e.,

Ho :ajp = ajr = ajo; djy = djr = djo, wjy = wjr = wjo,

the Lo distance test statistic, d}, has asymptotic generalized x? distribution. The null distribution of ch can
also be simulated, allowing us to test whether the IRFs significantly differ across groups.

Illustration

Here, we use a simulated data set to illustrate the DIF correction procedures. The dataset for the current
example is available in DIF_example.RData. The response data (J = 15, responses_dif) is simulated so
that the first item has DIF against the focal group (group == 'F'). The correct response to item 1 depends
on both 6 (theta) and a nuisance variable (nuisance).

What we want to do is to use the process features of item 1 (fts_item_1), which contain both 6 and nuisance
trait information, to reconstruct the nuisance variable (7), so that DIF of this item can be corrected by
incorporating 7 into the measurement model.

First let us look at some summary statistics:

e Frequency of focal and reference group membership

11

e Distribution of true @ in these two groups
e Distribution of true nuisance 7 in these two groups

table(group)
group

F R
2429 14334

boxplot(theta ~ group, main = 'theta')

theta

theta
2

- . .
©)
I
R

group

boxplot(nuisance ~ group, main = 'eta')

12

eta

nuisance
0
I

group

Next, we use the mirt package to perform likelihood ratio test to determine whether the first 3 items have
DIF. We use items 4 to 15 as the anchor set, i.e., items assumed to have no DIF.

library(mirt)
dif_model <- multipleGroup(responses_dif, 1, group = group,
invariance = c(colnames(responses_dif) [-(1:3)], 'free_means','free_var')

)

Iteration: 1, Log-Lik: -128752.146, Max-Change: 0.93743Iteration: 2, Log-Lik: -126758.595, Max-Chang
DIF(dif_model, c('a', 'd'), items2test = 1:3)

#i# AIC AICc SABIC HQ BIC X2 df)
item_1 -229.521 -229.512 -224.972 -226.971 -221.794 231.521 1 0.000
item_2 -0.142 -0.132 4.407 2.408 7.585 2.142 1 0.143
item_3 0.477 0.486 5.026 3.027 8.204 1.523 1 0.217

It can be seen that only item 1 was found to have significant DIF. In what follows, we try to correct for the
DIF in item 1 using process features from this item. This is done through forward selection that minimizes
the Ly difference in IRFs of the two groups. Specifically, the following steps are performed:

e On the anchor set (items without DIF, here, items 2 to 15), get an initial estimate the 6, éo.

o Initialize model: fit 2PL (logistic regression) with one predictor, 0o, separately for focal and reference
groups. Calculate Jj and calculate the p—value for testing Hy. Here, we expect Hj to be rejected
because the IRF should be different for the two groups, when conditioned on 6 only. Use this as the
base model.

e For k=1: K, with K as the maximum number of process features to include for n (K, less than or
equal to the number of process features), iterate the following:

— For each of the features that are not yet included in the base model, add the feature to the base

13

model. Refit the logistic model for focal and reference groups, calculate dAj for the model with the
new candidate feature.

— The model that (1) has significant and new feature coefficients and (2) achieves the lowest d;
will become the updated base model. The newly added feature in this model is added to the set of
features for reconstructing 7.

o Select the model with £* new features, where k* is the dimension (1 : K') that achieves lowest czj, as
the final model. The first k* selected process features are incorporated for n reconstruction. Denote the
selected set of features by ;.

o Test the hypothsis Hy on the final model to verify that DIF has been removed.

e On full data (focal + reference), fit the logistic regression model, P(Y; = 1 | 69, Xk,) =

L . The new item parameters for the IRF P, (Y; | 6,n;) will be: '

1+eXP(7[B090+Zk€,C_ BrXjk+9])
J
— a; = Bo
—d;j =0
— wj = 0 for k not in K;, and wji, = g—’; for k € K;.

To implements this. We make use of two functions:

e DIF_forward: This function implements forward selection of process features to minimize the Lo
distance between the two groups’ P(Y; =1 |6p,n; = Y, _; wjrX;kr). The arguments are as follows:

— features: The matrix of process features (N x K) for the item with DIF

— response: Vector of response (length N) for the item with DIF

— group: Vector of group membership ('F' or 'R')

— theta_ref: The initial 6 estimate from anchor set, 0o

— K: Max number of process features to be selected. Default is the dimension of features.

This function will return the order of feature selection, the Lo distance between the two groups’ IRFs using
these features, and the p—value for testing Hy.

DIF_forward <- function(features, # process features from DIF item

response, # response vector on the DIF item

group, # vector of group membership, 'F' or 'R’

theta_ref, # latent trait estimate on the anchor set (items w/o DIF)

K = NULL # maz number of feature dimensions to add (default to featur
AL

reorganize data
Xs <- cbind(theta_ref, features)

Xf <- Xs[which(group == 'F'),]
Xr <- Xs[which(group == 'R'),]
Yf <- response[which(group == 'F')]
Yr <- response[which(group == 'R')]

if(is.null(K)) K <- ncol(features)
results_by_k <- matrix(NA, (K+1), 2)
colnames(results_by_k) <- c('L_2', 'p")

initialize —--- theta only in irt model

Xf_tmp <- as.matrix(Xf[,1])

Xr_tmp <- as.matrix(Xr[,1])

results_by_k[1,] <- DIF_p_value_sim(Xf_tmp, Xr_tmp, Yf, Yr, sim = T)

cat('--- Initial model = -----—- \n L2 dist: ',results_by_k[1, 1],
‘\n p-value: ',results_by_k[1,2],'\n')

add process features one by one, each feature chosen to minimize 12 distance
add_index <- c()

14

for(dim in 1:K){
remain_index <- setdiff((1:ncol(features)), add_index)

calculate 1_2 for each added candidate feature
p_value_temp <- foreach(k = 1:length(remain_index), .combine = c, .noexport = c('matmult_cpp', 'run
already selected
Xs_tmp <- as.matrix(Xs[,c(1, (add_index+1))])
add new candidate feature
Xs_tmp <- cbind(Xs_tmp, Xs[,(remain_index[k]+1)])
split to focal and reference

X_focal <- Xs_tmp[which(group == 'F'),]
X_ref <- Xs_tmp[which(group == 'R'),]
tryCatch(

DIF_p_value_sim(Xf = X_focal, Xr = X_ref, Yf = Yf, Yr = Yr, sim = F),
error = function(e) c(1, 0)

)
}
p_value_temp <- matrix(p_value_temp, nrow = 2)
stopifnot(dim(p_value_temp) == c(2, length(remain_index)))
if (sum(p_value_temp[1,]) == length(remain_index)){

break
}

select feature with lowest L_2
k <- which.min(p_value_temp[1,])
add_index <- c(add_index, remain_index[k])

get p wvalue

Xs_tmp <- Xs[,c(1,(add_index+1))]

split to focal and reference

X_focal <- Xs_tmp[which(group == 'F'),]

X_ref <- Xs_tmp[which(group == 'R'),]

results_by_k[dim+1,] <- tryCatch(
DIF_p_value_sim(Xf = X_focal, Xr = X_ref, Yf = Yf, Yr = Yr, sim = T),
error = function(e) c(1, 0, 0, 0, 0, 0)

cat('--- K =',dim, 'Adding ft', remain_index[k],'-—---- \n L2 dist: ',results_by_k[(dim+1), 1],
'"\n p-value: ',results_by_k[(dim+1),2],'\n")

3

results_by_k <- cbind(results_by_k, c(NA, add_index))
colnames(results_by_k) [3] <- 'Added_ft'
return(results_by_k)

o get_itempar_DIF: Using the output from DIF_forward, get the item parameters (a;,d;,w;) for the
final model. Arguments are as follows:

— features: The matrix of process features (IV x K) for the item with DIF
— response: Vector of response (length N) for the item with DIF

15

#
ge

AL

— theta_ref: The initial 6 estimate ﬁonlanchorset7§0
— DIF_forward_result: The output from DIF_forward
— K: Final number of process features to be incorporated. Default is the k achieving the lowest Lo

distance.
Updated IRT model w/ Nuisance
t_itempar_DIF <- function(features, # process features from DIF item
response, # response vector on the DIF titem
theta_ref, # latent trait estimate on anchor set (items w/o DIF)
DIF_forward_result, # output matriz from DIF_forward (index of selected feat
K = NULL # feature dimension to add (default to dimension with sm

Default K: lowest L2 distance between focal and reference irfs
if (is.null(K)){

K <- which.min(DIF_forward_result[,'L 2'])-1
X

get feature set
add_index <- DIF_forward_result[1:K+1,'Added ft']

fit logistic

Xs <- cbind(1, theta_ref, features[,add_index])

pars <- glm.fit(Xs, response, family = binomial(), intercept = F)$coefficients
d <- pars[1]

a <- pars[2]

omegas <- numeric(ncol(features))

omegas[add_index] <- pars[-(1:2)]/a

return(list(a = a, d = d, omegas = omegas))

}

Because the variable selection can take a few minutes when K is large, we set K = 10 in the current
illustration.

item_DIF <- 1

init_model <- mirt(responses_dif[,-item_DIF], 1, '2PL')

Iteration: 1, Log-Lik: -118814.750, Max-Change: 0.52620Iteration: 2, Log-Lik: -117332.997, Max-Chang

theta_init <- fscores(init_model)

DIF results <- DIF_forward(fts_item_1,
responses_dif[,1],
group,
theta_init,

K = 10)

——- Initial model = ------

L2 dist: 0.1949156

p-value: O

--- K = 1 Adding ft 16 —-————-

L2 dist: 0.08087156

p-value: O

--- K = 2 Adding ft 10 --—-——-
L2 dist: 0.06391115

p-value: O

16

-—— K = 3 Adding ft 4
L2 dist: 0.03704745
p-value: 0.03

--—- K = 4 Adding ft 8
L2 dist: 0.03393897
p-value: 0.06

-—— K = 5 Adding ft 14
L2 dist: 0.03335343
p-value: 0.05

--—- K = 6 Adding ft 28
L2 dist: 0.03378653
p-value: 0.09

-—— K = 7 Adding ft 9
L2 dist: 0.03489171
p-value: 0.14

--- K = 8 Adding ft 13
L2 dist: 0.03782261
p-value: 0.17

-—— K = 9 Adding ft 15
L2 dist: 0.0396233
p-value: 0.08

--— K = 10 Adding ft 50
L2 dist: 0.04547892
p-value: 0.05

itempar_dif_1 <- get_itempar_DIF(features

ed_ft
NA
16
10
4
8
14
28
9
13
15
50

as.data.frame(DIF_results)
L_2 p Add
1 0.19491555 0.00

2 0.08087156 0.00

3 0.06391115 0.00

4 0.03704745 0.03

5 0.03393897 0.06

6 0.03335343 0.05

7 0.03378653 0.09

8 0.03489171 0.14

9 0.03782261 0.17

10 0.03962330 0.08

11 0.04547892 0.05
itempar_dif_1

$a

F1

0.6139196
##

$d

##

-1.371837
##

= fts_item_1,
response = responses_dif[,1],
theta_ref = theta_init,

DIF_forward_result = DIF_results)

17

##
##
##
##
##
##
##
##
##
##

$omegas

[1] 0.0000000 0.0000000 0.0000000 7.5018459 0.0000000 0.0000000

[7] 0.0000000 0.5439357 0.0000000 4.1179758 0.0000000 0.0000000
[13] 0.0000000 -0.5982839 0.0000000 7.9552883 0.0000000 0.0000000
[19] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[25] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[31] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[37] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[43] 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[49] 0.0000000 0.0000000

The last step would be to re-estimate the target trait 6, with:

e the updated IRF for the DIF item, and
e the responses + original IRFs for the rest of the items.

This is done with the update_theta function. Arguments:

o responses: The response matrix (N x J)
e item_DIF: Index of items exhibiting DIF

o fts_DIF: A list (length same as item_DIF) of DIF items’ features. Each element is feature matrix of

the corresponding DIF item

e as_anchor, ds_anchor: vectors of a and d parameters for items without DIF.
e itempars_DIF: list of DIF item parameters, each element is the output from get_itempar_DIF for the

DIF item

e method: Method used to estimate 6. Default is 'EAP', which performs Bayesian expected a posteriori
estimation with standard normal prior. Another option is 'MLE' with (—4,4) as the lower and upper

bounds.

update_theta <- function(responses,

)

item DIF
fts_DIF,
as_ancho
ds_ancho
itempars
method =

>

r’

r’

_DIF,
'EAP'

H R R R R KRR

response matric

vector of DIF ttem indezx

list of DIF item features, each element is ft mat of
vector of a parameters for items w/o DIF

vector of d parameters for items w/o DIF

list of DIF ttem parameters, each element ts output o
trait estimation method; 'EAP': N(0,1) prior; 'MLE':

get nuisance of each item (for no dif items this is 0)

etamat <- matrix(0, nrow(responses), ncol(responses))
for(i in 1:length(item_DIF)){

fts <- fts_DIF[[i]]

itempars <- itempars_DIF[[i]]

etamat[,item_DIF[i]l] <- fts ’*), itempars$omegas

3

get item slope and intercepts

as <- ds <- rep(NA, ncol(responses))

as[-item_DIF] <- as_anchor

ds[-item_DIF] <- ds_anchor

as[item_DIF] <- sapply(itempars_DIF, function(x) x$a)
ds[item_DIF] <- sapply(itempars_DIF, function(x) x$d)

estimate theta

if (method == 'EAP'){
theta_pts <- seq(-4, 4, .2)

18

theta_density <- rep(l, nrow(responses)) %07 (dnorm(theta_pts) * .2)
like_theta <- matrix(NA, nrow(responses), length(theta_pts))
for(t in 1:length(theta_pts)){

theta <- theta_pts[t]

get likelihood | theta
like <- rep(l, nrow(responses))
for(i in 1:ncol(responses)){
like <- like * (p_dif(theta, etamat[,i], as[i], ds[i]) "responses[,i]) =*
((1-p_dif (theta, etamat[,i], as[i], ds[i]))~ (1-responses[,i]))

3

like_thetal,t] <- like

}

theta_est <- colSums(theta_pts * t(theta_density * like_theta))/(rowSums(theta_density * like_theta

theta_est[n] <- optimise(1ll_dif, lower = -4, upper = 4, as = as, ds = ds,
etas = etamat[n,], response = responses[n,])$minimum

}

if (method == 'MLE'){
theta_est <- rep(NA, nrow(responses))
for(n in 1:nrow(responses)){
}

}

return(theta_est)

}

Here we plot the updated 0 (theta_new) against the true theta to evaluate its accuracy. We can also look at
the relationship between true and reconstructed nuisance.

item DIF <- 1

init_model <- mirt(responses_dif[,-item_DIF], 1, '2PL')

Iteration: 1, Log-Lik: -118814.750, Max-Change: 0.52620Iteration: 2, Log-Lik:

—-—-- reestimate theta incorprating nuisance for dif items

fts _DIF <- list(fts_item_1)

itempars_DIF <- list(itempar_dif_1)

itempar_anchor <- coef(init_model, simplify = T)$items
as_anchor <- itempar_anchor[, 'al']

ds_anchor <- itempar_anchor[,'d']

theta_new <- update_theta(responses = responses_dif,

plot(theta_new, theta)

item_DIF = item_DIF,

fts_DIF = fts_DIF,

as_anchor = as_anchor,
ds_anchor = ds_anchor,
itempars_DIF = itempars_DIF,
method = 'EAP')

19

-117332.997, Max-Chang

theta

theta_new

eta <- fts_item_1 %*), itempar_dif_1$omegas
plot(eta, nuisance)

20

OO

- OO0 O

oJuesinu

50

-50

-100

eta

21

	Application 1: Predictions
	Method: Ridge Regression
	Example: Predictions with Climate Control Processes

	Application 2: Scoring
	Method: Rao-Blackwellization Scheme
	Illustration: Simulated data set

	Application 3: DIF Correction
	Dimensional Account of DIF
	DIF Removal with Process Features
	Illustration

